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Abstract 

The problem of phase refinement and extension at 
very low resolution (30-25 ~)  is treated with an 
algorithm that combines a maximum-entropy 
approach, a binary modelling of the electron density, 
refinement of the proposed map against the observed 
amplitudes and solvent flattening outside a molecular 
envelope. The algorithm is applied to data for the 
complex of aspartyl-tRNA and aspartyl-tRNA syn- 
thetase in three different cases: (1) X-ray amplitudes 
and phases calculated from a partial model; 
(2) mixed observed and calculated X-ray ampli- 
tudes and phases from a partial model; and 
(3) observed neutron amplitudes and phases from a 
very approximate model. The change of correlation 
with the correct map at 30 A resolution is used as a 
measure of correctness. Upon application of the 
algorithm, this correlation changes from 59 to 97% 
in case 1, from 59 to 77% in case 2 and from 72 to 
90% in case 3. In all cases, the method is successful 
in correcting large phase errors, deleting noise regions 
and producing the correct low-resolution molecular 
image. 

Introduction 

Macromolecular crystallography is a unique tool for 
imaging the structures of protein and nucleic acids. 
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Images are obtained from the Fourier transform of 
the diffraction pattern of the crystal. In the classical 
picture the scattered radiation consists of X-rays at 
a resolution where individual atoms are close to being 
resolved, and the phases with their error estimation 
are obtained by the multiple-isomorphous-replace- 
ment (MIR) method (Blow & Crick, 1959). 

When all the necessary conditions are fulfilled, the 
classical approach is extremely powerful and a very 
detailed image of the macromolecule is obtained. 
However, it is not always possible to obtain high- 
quality crystals that diffract to high resolution and 
the necessary heavy-atom derivatives. In this case, 
alternative phasing techniques can be used. These are 
varied, and the following examples can be cited (the 
list is clearly not exhaustive). 

(1) Electron microscopy of an ordered specimen 
can give a 3D image of 7 ~ resolution (Henderson 
& Unwin, 1975), though most of the image reconstruc- 
tions have been limited to about 25 ~ resolution. 

(2) A low-resolution translation search with a 
crude model can generate phases between 30 and 
15 ~ resolution (Podjarny et al., 1987). 

(3) Neutron diffraction with different D20/H20  
levels can be used instead of heavy atoms, if one 
component is known. Phases are generally good to 
30/~, resolution, and can extend as far as 15 
resolution (Bentley, Lewitt-Bentley, Finch, Podjarny 
& Roth, 1984). 
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(4) If the structure of a highly homologous 
molecule is known, molecular replacement methods 
can be used to derive high-resolution (1.5-3~)  
phases (Rossmann, 1972). 

(5) If the molecular packing includes non-crys- 
tallographic symmetry, averaging of independent 
units can be used to improve and/or extend phase 
information (Rossmann & Blow, 1963). 

(6) If the crystal includes a large volume of solvent 
and some MIR information is known, solvent-flat- 
tening techniques can be used to improve and/or 
extend phase information to high resolution (Hen- 
drickson, Klippenstein & Ward, 1975). 

This paper is concerned with cases 1-3 where there 
is only some low-resolution phase information. This 
case was not relevant to the first applications of 
macromolecular crystallography, since attention was 
focused on small closely packed proteins and there 
were very few reflections at a resolution of 30 A. 
However, as larger and more complex systems are 
studied, low-resolution scattering becomes important 
in obtaining the molecular image. 

The case of the aspartyl-tRNA synthetase complex 
from yeast 

As a test case where the correct determination of 30 ,~ 
resolution phases is important, the complex of aspar- 
tyl-tRNA and aspartyl-tRNA synthetase was chosen. 
The complex involves a dimer of aspartyl-tRNA syn- 
thetase (Mr=125 000) and two aspartyl-tRNA 
molecules (Mr = 24 160). It crystallizes in space group 
1432 (a = 354 A) with a diffraction pattern extending 
to 7.9 A resolution (Lorber, Gieg6, Ebel, Berthet, 
Thierry & Moras, 1983), and in space group P2~2~2~ 
(a = 220, b = 145, c -- 85/~), with a diffraction pattern 
extending to 2.7 ,~ resolution (Ruff, Mikol, Lorber, 
Cavarelli, Mitschler, Gieg6, Thierry & Moras, 1987). 

At present, native and heavy-atom data are avail- 
able for the cubic form, as well as enough crystals of 
the orthorhombic form to collect a full data set. 
However, for historical and technical reasons the only 
complete diffraction data available during a long 
period was the native diffraction of the cubic form. 
Therefore, considerable effort was devoted to the ab 
initio phasing of the native cubic intensities, which 
produced a 15 ~ model consisting of 140 Gaussian 
scattering centers, 70 for the synthetase dimer and 70 
for the two tRNA molecules (Podjarny et al., 1987). 
Two different data sets were used to obtain this model: 
(1) X-ray diffraction amplitudes extending to 7.9 ,~ 
resolution but lacking 41 very-low-resolution reflec- 
tions (4629 reflections, of which 1669 were used in 
the refinement); and (2) neutron diffraction ampli- 
tudes to 18/~ resolution, including 28 of the 41 miss- 
ing X-ray reflections (370 reflections, of which 177 
were used in the refinements). 

The phasing effort proceeded stepwise in reso- 
lution. A rough low-resolution model was first 
obtained using translation functions with Gaussian 
spheres, and then painstakingly improved through 
alternate cycles of density modification (to impose 
real-space constraints), difference maps and least- 
squares refinement (to obtain the best agreement 
between model and observed amplitudes). During 
this effort, it became clear that an alternative and 
more automatic way to refine and extend low-reso- 
lution phases was necessary if the method was to 
become general. This alternative method should have 
both the power of density modification to impose real 
space constraints and of least-squares refinements to 
maximize the agreement of model and observed 
amplitudes, and is proposed below. 

Theoretical outline 

Information theory has provided a strong conceptual 
framework in connection with electron density re- 
construction (Collins, 1982; Wilkins, Varghese & 
Lehmann, 1983; Bricogne, 1984; Livesey & Skilling, 
1985; Navaza, 1985). In particular, the method pro- 
posed in this paper simultaneously imposes a real- 
space modelling and the agreement of observed and 
calculated amplitudes. Different models are possible, 
depending on the resolution range of interest. For 
example, it was shown (de Rango & Navaza, 1984; 
Navaza, 1986) that it is possible to obtain a map of 
quality comparable to a 1-1.5 A calculated map start- 
ing from a 3.6-3 A phase set and imposing a model 
of Gaussian spheres. Alternatively, for low resolution 
it was found (Cannillo, Oberti & Ungaretti, 1983) 
that a binary representation where the map density 
is constrained to take one of two possible values is 
adequate. The present formalism can be used to pro- 
duce a binary density map of limited Fourier spectrum 
by fitting the data under artificially severe constraints. 

We briefly recall the fundamental results of the 
theory developed by Navaza (1985), to which the 
reader is referred for details. The maximum-entropy 
estimate of the electron density function (m) is the 
average value over the set A of all admissible maps 
m, given by 

(re(r)) = ~ Pme(m)m(r)Om (1) 
A 

where the probability distribution Pine(m) is the solu- 
tion of the constrained maximization of the entropy 
functional 

H(P)  = - ~  P(m)ln[P(m)]Dm. (2) 
A 

Under very general conditions (m) is a functional 
of the Lagrange multipliers associated with the 
experimental information (diffraction data and pos- 
sibly available phases). The actual functional form is 
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determined by the information that defines the 
domain of admissible maps (positivity, molecular 
envelope, upper map limit). 

In this paper the information used was 

Pmin(r) < m(r) < Pmax(r) 

iF (h ) )  = (1/V) J" (m(r))  exp (2 7rihr) dr 3 

(3a) 

= Fobs(h), h ~ H  (3b) 

I(F(k))l = I(1/V) ~ (re(r)) exp (27rikr) dr31 

= IFobs(k)l,  k e K  (3c) 

where H is the set of Miller indices of the structure 
factors of known amplitude and phase, K is the set 
of Miller indices of the structure factors of known 
amplitude and unknown phase, and Pmin and Pmax 
are the minimum and maximum allowed density 
values. 

This information leads to the maximum entropy 
estimate (m) given by 

with 

(m(r))--O'5(Pmax+ Pmin) "~- 0"5 ~p{1/[x(r)~p] 
- 1/ tanh [x(r)Sp]} (4) 

t~p = 0"5(Pmax-- Pmin ) 

and 

x ( r ) =  ~ h(b)  exp (-27ribr). (5) 
b ~ H u K  

All estimates are thus functions of the set of Lagrange 
multipliers which satisfy the system of equations (3 b), 
(3c) and 

A(k)*(F(k))-A(k)(F(k))*=O, k~K.  (6) 

In particular, the predicted values of the Fourier 
coefficients Fen t a r e  obtained in modulus and phase 
from the Fourier transform of (m(r)). 

For unrealistically small values of Pmax, no map 
will simultaneously satisfy the constraints (3), and 
the Lagrange multipliers will diverge. Equations (4) 
and (5) imply that, for large enough values of the 
Lagrange multipliers, (m) will tend to Pmin or Pmax. 
Therefore, the binary modelling can be obtained by 
artificially reducing the upper density limit of the 
admissible maps. 

Numerical algorithm 

The algorithm flow chart is represented in Fig. 1. The 
first part (top half of the chart) produces an initial 
set of Lagrange multipliers A at resolution Resin, the 
parameters flmax and F(000), and optionally a 
molecular envelope (Mask). It starts from the 
observed structure factors Fobs known in modulus 
and phase at the same resolution Resin (if a figure 
of merit w is available for the input phases, the input 
amplitudes are taken as wlFobsl). 

Program D calculates an input map, and produces 
a value of Pmin and an artificially low value of Pmax. 
It estimates F(000) by imposing a pre-assigned ratio 
(flmax/Pmin) and calculates a molecular envelope by 
a procedure originally developed by Westbrook 
(1985). The h's  associated with this information are 
calculated by the program P1, as described by Navaza 
(1985). 

The second part (bottom half of the chart) con- 
stitutes the core of the algorithm. Starting from a set 
of h's at resolution Resin and the observed amplitudes 
I fobsl at resolution Resout, the program P2 gives new 
h's  and estimated phases of the structure factors at 
resolution Resout. Optionally, the molecular 
envelope and the input parameters F(000) and Pmax 
may be updated. 

This central part of the algorithm can be used either 
for phase refinement (Resout = Resin) or iteratively 
for phase extension and refinement (Resout > Resin), 
in which case Resout can be reached from Resin in 
one or several steps. The only difference between P1 
and P2 is that while in the first case (phases and 
moduli given as input information) the problem has 
a unique solution, in the second case (only moduli 
given) the resulting A's depend to some extent on 
their initial values. 

Results 

The algorithm described above was used to improve 
the phases at 30 ~ resolution of the tRNA synthetase 

wFobs,Resin I 

X Resin 

[ ,Fobsl,Resout 

~. , Resout 

, e ° ,  R e , ° o ,  

Fig. 1. Flow chart of the proposed algorithm. The large box at the 
top represents the first part, the large box at the bottom the 
second part. Data to the left are input data, data to the right are 
output data. For a detailed explanation, see text. 
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1 (a)  F¢:,, (p¢:, 1 
(b) Fp ... .  (ppa,, J" 

2 (a) F::,, (p~, ) 
(b) Fent, (peru J starting from phases (1 b) 

3 (a) Fcai, <Peal ] 
(b) Fent, (pent J starting from phases (1 b) 

4 (a) Foal, (pca, ] 
(b) Fp .... (ppart 

omitting reflections with w < 0.01 
5 (a) Fcal, (Peal ) 

(b) F~,,. (po., J starting from phases (4b) 
6 (a) Fcal. (peal ) 

(b) Fo.~. ¢~., 
starting from phases (4b) 

7 (a) Fobs. (pcat / 
(b) Fp .... (p~>~,,j" 

8 (a) Fobs, (pcal 1 
(b) F,,,, (po., 

starting from phases (7b) 
9 (a) F~eu. (peal "~ 

(b) Fmod, (pmodJ 
10 (a) Fne~, (peal ] 

(b) Fent, (pent / with individual check of 
largest centrosymmetric reflections 

11 (a) Fneu, (pcal ") 
(b) F, nt, (pent J starting from phases (10b) 

Table 1. Comparisons between pairs of test cases 

R.m.s. 
Reso lu t ion  N u m b e r  o f  (~o)  (wS~o) R Rsq 

(/~) ref lect ions (o) (o) W M  fac to r  f ac to r  

30 110 44.5 75.8 0.623 0.53 0.58 

F 
cor re la t ion  

0-64 

30 110 33.2 67.3 0.70 0.34 0.44 0-87 

25 179 45-8 69.4 0.68 0.35 0-44 0.88 

30 99 40.7 52.8 0.80 0.49 0.5 0.71 

30 110 12.5 10.5 0.99 0.30 0.32 0.98 

25 179 28.9 19.3 0.97 0.32 0-33 0-97 

30 110 44-5 78-2 0.60 0-59 0-60 0.61 

30 110 54.9 54.8 0.79 0.31 0.37 0.89 

30 103 61.9 63.7 0.72 0.32 0-26 0.95 

30 103 58.4 36.6 0.89 0-33 0.35 0.94 

25 167 74. I 42.5 0.86 0.32 0.35 0.94 

Notes: F, (p stands for the structure factor Fle'¢; &o = ~ (a ) - (p (b ) ;  w = figure of merit. F correlation = [~ IF(a)IIF(b)I]I{[Y (IF(a)l)2][Y~ (IF(b)t)2]} 112. 
WM = (~ [[F(a)l 2 cos (,~(p)]}/[Y IF(a)[2]. In lines 7 and 8, the IFobJ set is combined (see text). 

complex (Podjarny et al., 1987), used as a test case. 
Three different cases were treated. 

(1) Calculated amplitudes from complete model and 
ph'ases from partial model 

As a first test, a fully calculated case was studied. 
A model of the complex composed of 140 spheres, 
70 corresponding to the tRNA and 70 corresponding 
to the synthetase, was refined at 30 A against neutron 
data; one tRNA molecule which was particularly well 
positioned represented after refinement 42.2% of the 
scattering power (Podjarny et al., 1987). This com- 
plete model was taken as the correct one, and used 
to calculate structure factors IFCa,[ exp (i~¢ca~). A par- 
tial model was built without this tRNA molecule, and 
used for the calculation of the input test phases, ~pa~t, 
as well as for the corresponding amplitudes, I Fpart]. 
This introduced a systematic phase error which 
changed the phases of very intense centrosymmetric 
reflections and corresponded to a low correlation 
value WM (0.64) between the maps phased with 
correct and partial phases (see line 1 of Table 1). 

The structure-factor amplitudes from the complete 
model (]Fcal[) and the partial model (IFpa,I) were used 
to calculate a Sim weight, Wsim. Phases were refined 
to 30/1, and extended to 25/~. The starting map (Fig. 

2b) was calculated with 30 A phases from the partial 
model Cpa~ and amplitudes Wsim IF.d. The com- 
parison of final phases, Ce,,, with the correct phases, 
~ca,, is shown in Table 1, lines 2 and 3. An electron 
density map calculated with these phases (Fig. 2c) 
shows that the omitted tRNA was correctly represen- 
ted when compared with the complete model (Fig. 
2a). However, a few large reflections with wrong 
phases were not corrected by the algorithm. 

Consequently, Sim weights were recalculated 
for the partial phases, adding an extra constraint. 
The r.m.s, standard deviation, r .m.s . (6F)= 
[(IFw,., l- lF~all)2)] 1i2 was calculated over the whole 
data set, and Wsim was set to zero if abs ([Fpar~i- 
[Fcali)>3r.m.s.(SF), deleting two extra reflections 
from the data set. After deleting these reflections, the 
phase error was improved (see Table 1, line 4). 

The algorithm was applied with these new weights, 
startin~g from ~)part and Wsim] Fca,[. Phases were refined 
at 30 A and extended to 25/~, resolution. The com- 
parison of the refined phases and the correct ones is 
shown in Table 1, line 5, and the map calculated with 
the refined phases to 30 A is shown in Fig. 2(d). This 
map is practically identical to the correct one. The 
two reflections which had been omitted were predic- 
ted with the correct phase. The result of the phase 
extension to 25/~, is shown in Table 1, line 6. It should 
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be noted that in this case also the high correlation 
(0.968) shows that the 25 A map is very close to the 
correct one. 

(2) Observed and calculated amplitudes from complete 
model and calculated phases from partial model 

As a continuation, the test described above was 
repeated with observed X-ray amplitudes and the 
same model refined against X-ray data. The complete 
model was used to calculate IFca,I and q~caJ. Since the 
X-ray amplitudes of 41 very-low-resolution reflec- 
tions were not observed, they were replaced by the 
calculated values. Therefore, the amplitude set [Fobs[ 
was a mixed set, with 69 observed and 41 calculated 
reflections. The partial model was used to calculate 
[Fpart[ a n d  (~part, whose comparison with I Fobd and 
q~c~ is shown in line 7 of Table 1. Fig. 3(b) shows a 
map calculated from 21Fobsl-[Fpa~t] and ~0pa~t, and 
Fig. 3(a) shows the correct map calculated from IFobsI 
and ~0c~. It is clear that the error in the partial phases 
creates a very large noise region, mostly responsible 
for the low value of WM. 

Upon application of the algorithm as described 
above for phase refinement at 30 A, new phases ~o~,t 
were calculated. The comparison with ~Oc~ is shown 

in line 8 of Table 1. Note the improvement of WM 
from 0.56 to 0-79. Fig. 3(c) shows the map as calcu- 
lated with [Fobsl and ~ent, indicating that the noise 
region is clearly diminished. 

(3) Observed amplitudes and poor phases 

As a third test, the initial data set consisted of 
observed neutron amplitudes [F, eu[ and phases ~0mod 
from a model of five Gaussian spheres. The interest 
of this case is that the model was derived from ab 
initio translation searches with spheres and refined 
against neutron amplitudes in the very early stages 
of solution of the structure, and that improvement of 
the corresponding phase set, obtained painstakingly 
with several stages of refinement and density 
modification, was crucial for obtaining the final 
solution (Podjarny et al., 1987). 

A 'correct' phase set, ~0ca~, was obtained from the 
last model refined against neutron amplitudes. 
Measured against this set, the quality of the ~0mod 
phases was poor, as shown in Table 1, line 9. This is 
due to the presence of large centrosymmetric reflec- 
tions with wrong phases. The execution of the 
algorithm failed to correct these wrong phases, start- 
ing either from the complete data set or a weighted 

(a) (b) 

(c) 

(a) 

(d) 
(c) 

Fig. 2. (a) Superposit ion of a tRNA backbone (to be omitted in 
the partial model)  and an electron density map calculated from 
complete model  data at 30/~ resolution. (b) Same as (a), with 
an electron density map with correct weighted amplitudes 
(Wsim IF~a,I) and phases from partial model (~part)" (C) Same 
as (a), with an electron density map with correct amplitudes 
(IFc,,I) and phases from entropy algorithm without cutoff on 
Sim weighting (~oem). Correlation with correct map = 0-71. (d) 
Same as (c), but including a cutoff on Sim weighting. Correlation 
with correct map = 0.989. Note the absence of spurious peaks. 

(b) 

Fig. 3. (a) Superposit ion of tRNA model and correct electron 
density map calculated from mixed X-ray and model amplitudes 
IFo.sl and model  phases (~Ooal) at 30/~ resolution. (b) Same as 
(a), with electron density map calculated with amplitudes 
21Fobsl- IFcad and phases from partial model (~0part). Correlation 
with correct map = 0-60. Note large noise regions. (c) Same as 
(a), with electron density map calculated with observed ampli- 
tudes IFo~sl and refined phases (~oe,t). Correlation with correct 
map = 0-79. Note decrease of  noise regions. 
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data set with Sim figure of merit and a r.m.s.-based 
cutoff. 

Therefore, a different strategy was devised in which 
the algorithm was run separately for the prediction 
of each of the largest centrosymmetric reflections, 
starting from a data set where the corresponding 
phase had been omitted. This strategy succeeded in 
correcting the wrong phases associated with large 
amplitudes without introducing extra errors, that is, 
without changing the phases of the reflections which 
were originally correct. The comparison of ~ent and 
~cal is shown in Table 1, line 10. Note that the value 
of the WM improved from 0.72 to 0.89. While the 
original map (Fig. 4b) had large noise regions, the 
final map (Fig. 4c) is virtually equal to the correct 
one (Fig. 4a). Phases were extended to 25 ,~, resol- 
ution based on the 30 ~ refined phases (Table l, line 
11). Note that even with this extra resolution the value 
of WM is 0-76. 

Concluding remarks 

The tests described in this work show that the 
algorithm described succesfully combines the 
accuracy of least-squares refinement with the power 

(a) (b) 

(c) 

Fig. 4. (a) Superposition of tRNA model and correct electron 
density map calculated from neutron amplitudes I F, eul and 
phases from 140 spheres model data set (~¢al) at 30 A resolution. 
(b) Same as (a), with electron density map calculated with 
amplitudes 21Fneul-IFmodl and phases from 5-spheres model 
(~mod) at 30 A resolution. WM = 0.72. Note large noise regions. 
(c) Same as (a), with electron density map calculated with 
amplitudes IFneul and refined phases from this algorithm (~0e,t) 
at 30 ~ resolution. WM = 0.89. 

of density modification to impose real-space con- 
straints. Three different tests are described. In the first 
two, a systematic phase error was introduced when 
a large portion of the model was deleted, and in the 
third a very poor model was used for generating the 
initial phases. 

With calculated data (first case), the process refined 
to the correct data set starting from an initial set of 
poor phases, and the power of correcting the noise 
generated from the phase error remained when using 
observed amplitudes (second and third cases). 

In all applications it was crucial to delete from the 
initial phase set the reflections with erroneous phase 
and very large amplitudes. In the first two cases, the 
differences between I Fob~l and I Fcall were enough to 
identify these reflections. In the last case these reflec- 
tions were not easily identified, rendering the problem 
quite serious. An algorithm of systematic deletion is 
proposed; it is effective but lengthy. Further work on 
speeding up the systematic deletion is under study. 

The success obtained in the refinement of a poor 
phase set generated ab initio (case 3) opens the poten- 
tial for a general algorithm where phases are gener- 
ated at very low resolution and extended to high 
resolution, using only the native amplitudes and gen- 
eralized models. This will require application of this 
algorithm in different resolution ranges, which is cur- 
rently under study. 
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Abstract 

Two apparently different descriptions of acoustical 
activity - one due to Portigal & Burstein [Phys. Rev. 
(1968), 170, 673-678] based on the concept of spatial 
dispersion of the elastic stiffness tensor and the other 
based on the rotation-gradient theory due to Truesdell 
& Toupin [Encyclopedia of Physics, (1960), Vol. III/1. 
Berlin: Springer], Mindlin & Tiersten [Arch. Ration. 
Mech. Anal. (1962), 11, 415-447] - are analysed on 
the common basis of the first-gradient theory. A rela- 
tion between the tensors used for describing the 
acoustical activity in the two earlier descriptions is 
obtained. 

1. Introduction 

Ever since the concept of acoustical activity was intro- 
duced by Andronov (1960) and independently by 
Silin (1960) there has been continued interest both 
in its experimental observation (Pine, 1970; Joffrin, 
Dorner & Joffrin, 1980; Bialas & Schauer, 1982; Quan, 
Fang, Zhigong & Zenyi, 1987) and its theoretical 
characterization (Truesdell & Toupin, 1960; Mindlin 
& Tiersten, 1962; Portigal & Burstein, 1968; Mindlin 
& Toupin, 1971; Vuzhva & Lyamov, 1977; Kumar- 
swamy & Krishnamurthy, 1980). Recently the occur- 
rence of acoustical activity in crystals of different 
point-group symmetries has been examined from two 
apparently different points of view (Bhagwat, Wad- 
hawan & Subramanian, 1986; Bhagwat & Sub- 
ramanian, 1986) - the theory of spatial dispersion 
(Portigal & Burstein, 1968) and the rotation-gradient 
theory (Mindlin & Tiersten, 1962). Even though both 
viewpoints lead to the same acoustically active crystal 
classes, a disturbing feature remains: the tensors 
describing acoustical activity in the two descriptions 

have different symmetries and appear to be com- 
pletely unrelated. 

The aim of the present paper is to show that both 
viewpoints can be reconciled on the basis of the more 
general strain-gradient theory of acoustical activity 
where one employs the strain and its first gradient to 
describe the elastic deformation (Toupin, 1962; 
Mindlin, 1972). We also obtain a rationale for the 
maximum number of independent non-vanishing 
components of the acoustical activity tensors. 

The paper is organized as follows. In § 2 we briefly 
recapitulate the salient features of the spatial disper- 
sion theory of acoustical activity due to Portigal & 
Burstein (1968) and the rotation-gradient theory due 
to Truesdell & Toupin (1960) and Mindlin & Tiersten 
(1962). In § 3 we consider the full first-strain-gradient 
theory of elasticity given by Toupin (1962). Here we 
establish the formal equivalence of this theory with 
the theory of spatial dispersion. Further we show that 
rotation-gradient theory results from the general 
theory under certain additional restrictions. 

2. R6sum6 of two viewpoints 

A. Theory of spatial dispersion 

Portigal & Burstein (1968) explained the occur- 
rence of acoustical activity on the basis of spatial 
dispersion of the elastic stiffness tensor, by writing 
the most general form of Hooke's law as 

aij(r, t) = ~ dr' j dt' Cijkt(r-r', t -  t')ekt(r', t'). (2.1) 
- - O D  

As usual, summation over repeated indices will be 
implied. The stress tr at a point r at a time t is a 
linear superposition of strains at points r' at earlier 
instants t'. When spatial dispersion is small one may 
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